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Abstract Can consolidation policy be made consistent with macro-prudential super-
vision? In this study, we seek to provide new insights on this key-question using a
network approach. We study how the resilience of a banking network evolves as we
shock an initially homogenous competitive market with a sequence of M&A activi-
ties that significantly alter the topology of the network. We study how different M&A
treatments impact the structural vulnerabilities that can propagate through the sys-
tem and we show that the severity of contagion and default dynamics depends on
the chosen treatment. The desirability of alternative competitive settings (such as a
hub-centered market or a more concentrated and yet symmetric market) are assessed
against a homogenous benchmark case. We show that the choice depends crucially
on the size of the interbank market and the level of bank capitalization. The existence
of a large highly connected hub is beneficial in a capitalized network with a well-
developed interbank market, but it can significantly weaken the system’s resilience
in a poorly capitalized market. Antitrust and competition authorities should adopt a
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state-contingent approach to M&A activities according to the market conditions in
which banks operate.

Keywords Consolidation policy · Macroprudential regulation · Interbank networks

JEL Classification D85 · G21 · G34 · L40

1 Introduction

The Global Financial Crises (GFC) of 2007-08 has put to the fore two additional
dimensions to the established trend of consolidation in the banking sector registered
worldwide during the last three decades.

The first one has to do with the operational framework underlying the regulatory
strategic response to the GFC. A consensus is emerging among experts and practi-
tioners on the idea that the tighter standards for capital and liquidity requirements
brought about by the Basel III agreement, as well as the investment needed to comply
with the regulation, will force a decrease in the returns on equity, which will likely
drive a new wave of domestic and cross-border mergers among banks.1

Second, regulators, urged by compelling considerations of systemic stability, thor-
oughly arranged - and in some cases forced - the acquisition of troubled banks by
in-market competitors as a crisis-management tool to be added to traditional resolu-
tion procedures and state-supported bailouts. While this occurred repeatedly in the
USA (see e.g. the acquisitions occurred between April and October 2008 of Bear
Sterns by JP Morgan Chase, of Wachovia byWells Fargo, and of Countrywide Finan-
cial and Merrill Lynch by Bank of America), in the UK (where HBOS was taken
over by Lloyds TSB in September 2008) and in the Euro area (where BNP Paribas
acquired a 75 % stake in Fortis in September 2008, and a brand new institution called
Bankia was created in Spain from the integration of seven regional cajas in Decem-
ber 2010)2, very little is known as to the consequences these actions may have on the
financial soundness of the newly created legal entities, on the one hand, and on the
stability of the banking system as a whole, on the other.

Regardless of whether banking consolidation occurs through unassisted trans-
actions under standard market conditions or as emergency actions orchestrated by
regulators as a means of resolving a banking crisis, antitrust authorities and central
bankers have the opportunity to shape the structure of the industry by exercising their
authority to recommend, to approve or to block any single merger. Our starting point
is that M&A activities alter the topology of a network of interbank lending-borrowing
obligations for three reasons: 1) large players are formed that did not exist before

1Press reports on the emerging consensus abound. See, for instance, the ones published on the Bloomberg
(Small banks feel the urge to merge, Oct. 3, 2013) and the Reuters (Top bankers expect EU stress tests to
reignite banking M&A, Jan. 26, 2014) websites.
2A similar approach was adopted by local regulators during the 1997-98 Asian financial crisis (Shih 2003).
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(i.e., the size distribution of nodes changes); 2) the total number of active banks
decreases (i.e., the total number of nodes changes); 3) larger banks typically have
more borrowing-lending relationships than smaller banks (i.e., the degree distribution
of the network changes). Hence, in addition to affecting the competitive environment
in which banks operate, different strategic approaches followed by regulators in man-
aging consolidation processes (i.e., let just one very big bank form by allowing it to
acquire a large number of smaller banks; or limit the size of each merger to just two
small units at once) lead to different interbank network topologies, which could in
principle be characterized by different degrees of resilience to shocks and vulnera-
bility to financial contagion. If this is the case, banking consolidation policy can be
conceived as an additional tool for macroprudential regulation aimed at preventing
or taming systemic crises.

In this paper, we employ agent-based techniques to study the issues of the
resilience to shocks and the unfolding of systemic risk in an evolving interbank
network, where we explicitly account for the possibility that banks can be merged
or forced to be separated (for instance, in terms of business lines) over time. By
developing a flexible computational platform, we perform a set of simulation exper-
iments aimed at assessing the potential for contagion associated with alternative
M&A regulations. In particular, moving from a benchmark structure with a given
number of banks that are homogeneous both in terms of size and of interbank con-
nectivity, we compare three different network-changing M&A licensing policies
in order to evaluate their effect on the resilience of the system to an idiosyn-
cratic shock causing the insolvency of a node. In a first treatment, a single bank is
allowed to expand its business and grow in size by acquiring, from time to time,
its smaller competitors. In the other two treatments, we assume that a bank can be
disassembled and its activities evenly distributed to all other operating institutions,
and that a merger can be admitted only between two equally-sized small banks,
respectively.

The three treatments we consider can be seen as epitomes of various strate-
gies practically adopted by regulators over time in managing the consolidation of
the industry. While sequences of mergers leading to regional or national champi-
ons characterized the banking sector in USA and Europe during the 1990s (Boot
2003), in many cases antitrust concerns forced the new post-merger entity to sell
off several branches (and all associated assets and liabilities) to other financial
institutions, in order to preserve a target level of market concentration (Pilloff
2002). In turn, programs favoring the aggregation of small banks by banning
mergers among major banks had been followed until the 2000s in Australia and
Canada (IMF 2012).

Our results suggest that the systemic properties of the interbank topologies
emerging from different approaches to drive market consolidation are not all
alike, since they depend on key characteristics of the system. For instance, the
creation of a large highly interconnected bank operating as a hub turns out to
decrease systemic risk if institutions are well capitalized and interbank obliga-
tions represent a sufficiently high share of banks’ total assets, but its effect on
resilience is reversed in a poorly capitalized market. The clear policy implica-
tion is that, when deciding on how to manage the consolidation of the banking
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sector, a regulator may closely monitor the evolution over time of the inter-
bank network that ensues from the deal, its interactions with capital require-
ments, and the structural funding policies followed by all banks participating to
the market.

The ideas in this paper are related to several strands of earlier work. One branch
of the literature has extensively used mean-field approximation and simulation tech-
niques to assess the issue of contagion in banking systems. See, among others, Nier
et al. (2007); May and Arinaminpathy (2010); Gai et al. (2011); Battiston et al.
(2012); Krause and Giansante (2012); Gaffeo and Molinari (2015). One key finding
is the existence of a non-monotonic (inverted M or U-shape) relation between the
degree of connectivity and the number of defaults due to failure cascades occurring
in a network of mutual financial obligations. Connectivity acts first as a means to
increase the contagion effect, but beyond a certain threshold it contributes to enhance
risk-sharing and eventually the resilience of the system. Although contagion dynam-
ics is central to our story as well, we differ from these other works by explicitly
exploring how the propagation of idiosyncratic shocks may be affected by different
regulations aimed at altering the topology of the network through M&A transactions.
Furthermore, we add to the literature balancing the “stability” and the “fragility”
views on how market structure and competition policies in the banking sector
affect financial stability (Beck 2008; Berger et al. 2009; Vives 2011), a perspective
focused on how the complex web of balance-sheet interdependencies among finan-
cial institutions can be altered to tame systemic risks, thus reinforcing the case for a
macroprudential approach to bank consolidation policy (Ratnovski 2013). Finally, we
extend previous work analyzing bank merger decisions in stressed financial networks
(Leitner 2005; Rogers and Veraart 2013) by adopting an ex-ante approach. Previous
studies focus on the conditions under which the private sector in a distressed scenario
would have an incentive to save defaulting banks by acquiring their assets and taking
on their losses as well. Whilst (Leitner 2005) focus on the endogenous optimal for-
mation of links, Rogers and Veraart (2013) take the network as given, and show that
viable banks have both the incentives and the means to intervene whenever the cost
of rescuing a failed institution is smaller than the losses they would have incurred
if contagion had spread through the system. This ex-post approach allows one to
understand whether and under what conditions the banking sector can effectively
self-regulate and put in place damage-control interventions in the form of private res-
cuing. Nonetheless, it is silent about the resilience of the new self-organized system
that may emerge as a result of these private bail-outs. The desirability of the new enti-
ties born as a result of the post-default merges is yet to be assessed especially from a
macro-prudential viewpoint, and this paper is a first attempt to do this. Without an a-
priori knowledge of which bank will fail, merge or be acquired by another, a regulator
aimed at deploying a consolidation plan should compare alternative approaches to
consolidation policies, in order to gauge which one has superior properties in terms of
macroprudential objectives.

On top of this, our paper clearly speaks to the need of securing a stable financial
system as a prerequisite for sustainable economic growth. The causal process moves
from the reduction of uncertainty as regards prospective financial distress, to the
strengthening of the credibility of private financial institutions and an improvement
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of the overall macroeconomic environment, to an increase of investment rates causing
an acceleration of growth (Kliesen 2013).

The structure of the paper is as follows. Section 2 introduces a model of the bank-
ing system and shows how idiosyncratic shocks can propagate through the network
of interbank obligations. Section 3 discusses the design of the three treatments we use
to simulate alternative M&A rules, and describes how different consolidation poli-
cies alter the topology of the network. Section 4 presents the results we obtain from
Monte Carlo simulations, and Section 5 provides robustness checks. Finally, Section
6 concludes with some final remarks.

2 The model set-up

The network generating process (henceforth NGP) and the shock propagation mech-
anism used in this paper draw upon Gaffeo and Molinari (2015). Hence, here we only
outline their basic features and the interested reader may refer to it for further details.
Consider a banking network populated by n banks. Each bank i ∈ n is assumed to
have a balance-sheet as the one depicted in Table 1. Bank Assets comprise interbank
assets (IAi) and a broad category labeled external assets (EAi) that capture the sum
of all non-interbank assets such as loans to firms and households, treasury bonds and
other risk-free assets, cash-reserves etc. The liabilities are made up by core liabilities
(see Hahm et al. 2013) in the form of retail deposits (Di), and interbank liabilities
(ILi) as an additional source of funding. In our model, the “interbank market” is just
a short-cut for a set of instruments comprising overnight transactions, short-term and
long-term interbank debt and wholesale funding. The accounting identity between
assets and liabilities is ensured by the bank’s equity or net-worth (NWi).

Each entry of each bank’s balance-sheet is retrieved in the following way. First,
we create a weighted liability matrix Xl of mutual exposures.

Xl
n,n =

⎡
⎢⎢⎢⎣

x1,1 x1,2 · · · x1,j x1,n
x2,1 x2,2 · · · · · · x2,n
...

...
. . . xi,j

...

xn,1 xn,2 · · · · · · xn,n

⎤
⎥⎥⎥⎦

Each element xl
ij reads the interbank fund borrowed by bank i from bank j . By

construction, this is equal to the amount lent by bank j to bank i. As a benchmark, we
use a random Erdös-Rényi scheme in which each element xij takes a positive value

Table 1 Bank i’s balance sheet
Assets Liabilities

NWi

EAi Di

IAi ILi
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with a given independent probability p. A variant of the model in which the network
obeys a preferential attachment scheme is presented in Section 5 as robustness check.

Once the liability matrix is specified, the interbank liabilities ILi of each bank are
computed as:

ILi =
n∑

j=1

xl
ij (1)

and the interbank assets IAj as:

IAj =
n∑

i=1

xl
ij (2)

It follows that the deepness of the interbank market is given by:

IB =
n∑

i=1

IAi =
n∑

i=1

ILi (3)

External assets are imputed as a fixed proportion of interbank assets EA = αIB.
The capital buffer is assumed to be homogenous across all banks and is governed
by the parameter β that defines the equity ratio with respect to total assets: NWi =
β[EAi + IAi].

As will become clearer later, the interbank liabilities of a troubled institution act
in our model as the channel through which financial distress can spread to affect
other healthy nodes. This is the reason why we want to have perfect control over
the size of interbank exposures. To this end, we need to make some adjustments
to the weighted liability matrix in order to constrain the elements of each row to
sum up to the same amount. This implies that all banks borrow the same interbank
amount, and we let interbank assets be determined endogenously in a fashion simi-
lar to Gai and Kapadia (2010) or Gai et al. (2011). As a consequence, some banks
will be net borrowers and some will be net lenders in the interbank market. In order
to achieve this result, we set ex-ante the value of non-zero elements and divide this
number by the number of links that each bank has in each realization of the net-
work. In this way, ILi is given for each bank and it is evenly distributed across all
creditors, but the size of the single interbank loan is not fixed ex-ante and may vary
across banks.

Following the literature (see, for instance, Nier et al. (2007) and Gai and Kapadia
(2010)), we trigger contagion at time t = 1 with a targeted shock (γi) that wipes
out the external assets of one bank in the system. Our assumption can be motivated
as a large idiosyncratic shock due to credit or operational losses that, although rare,
can in fact occur (like the Leeson affair that drove Barings to bankruptcy in 1995)
or, alternatively, as the outcome of a common shock resulting in a loss for a single
institution so severe to force it into default, while leaving all the others viable.

The propagation of losses throughout the network works as follows: whenever a
bank i is buffeted, it fails if it does not have enough capital to cope with the shock.
Bank distress is managed under a resolution scheme the main purpose of which is
to avoid the premature closure of the financial institution, in order to preserve spe-
cific know-how and asset value without recurring to taxpayers funds. In particular, a
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supervisory authority forces a recapitalization of the bank at the expense of the cred-
itors with a conversion of external debt into equity. This allows a restoration of a
minimum viability threshold aimed at ensuring an ordered resolution.3

The dynamic adjustment works as follows: At time t=1, we set into default a
random bank i by exogenously destroying its external assets. In the following time-
round t+1, each bank j holding interbank claims against that failing institution will
be required to bail-in, and some (or all) of their interbank assets will be written off.
We define as non-distressed claims those interbank assets that are not marked down
for bail-in purposes. Starting from the initial weighted liability matrix, we build a
new matrix of non-distressed claims (NDC), updated according to the following rule
of motion of interbank exposures:

NDCji(t + 1) = [1 − θi(t)]NDCji(t) (4)

where NDCji(t) is the value of the outstanding loan at time t made from bank j to
bank i and θ is the loss-given-default.4

The total value of interbank (non-distressed) assets for each bank j at each time-
round t is simply computed as:

NDCj(t) =
∑
i �=j

NDCji(t) (5)

and:

1 − θi(t) =
{
1 − max(γi (t)−NWi(t),0)

ILi(t)
ifILi(t) − [max(γi(t) − NWi(t), 0)] > 0

0 ifILi(t) − [max(γi(t) − NWi(t), 0)] < 0
(6)

1 − θi(t) is the share of non-distressed loans made to bank i at each time-round
during the contagion process, and one can think of it as the recovery rate at time t for
the banks connected to the failing bank i. 1−θi(t) is bank-specific, time-varying and
consistent with a par condicio creditorum principle. Those neighbor banks that suffer
a residual loss larger than their equity base will enter a bail-in scheme and contagion

3Alternative contagion dynamics and channels can, of course, be envisaged. In their seminal work, Nier
et al. (2007) rely on a liquidation mechanism in which failed nodes are simply removed from the network.
On top of this, several amplification mechanisms have been discussed in the literature, such as fire-sales
(Anand et al. 2013), funding shocks triggered by recalling interbank assets (Krause and Giansante 2012),
financial accelerator (Battiston et al. 2012), haircuts (Gai et al. 2011). Distress can also be managed via
a public bail-out, and this has occurred several times during the last crisis. Both these solutions require
some sort of outside money to be poured into the system. A substantial amount of state funds (or tax-
payer money) is required to finance bail-out, and liquidation implicitly assumes that someone from outside
is willing to purchase the liquidated assets. Our mechanism does not rely on such infusion of external
funds (that may not necessarily be there when needed). Gaffeo and Molinari (2015) provide a comparative
analysis of the system’s resilience under the resolution scheme described above and the more standard
liquidation rule. They show that the former scheme is more effective in shielding the network from default
cascades and is, hence, more coherent with the macro-prudential vision that is at the core of this paper.
4Let us assume that the exogenous shock is given to bank i at time t = 1. This means that NDCji(1) =
Xl

ij ∀ i, j . The rule of motion as in Eq. 4 allows us to fill in the matrix of non-distressed loans (NDCji(t))
for t > 1) at each time-round during the contagion process.
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will spread to their creditors.5 Higher-order default avalanches can unravel through
the network and contagion stops when 1 − θi(t) equals one for all banks at a given
time t+k.

This set-up is now modified to embed the possibility to alter the structure of the
network via a series of M&A shocks, and the next section provides an accurate
description of these experiments.

3 Treatment design

In our view, competition policy should be explicitly recognized as part of the macro-
prudential toolkit to safeguard the banking system, for reasons that go far beyond
crisis-management purposes. The extensive microprudential regulation to which
banks are subject (Basel I-II, plus national legislations) - in terms of codes of con-
duct, laws, rules, standards as well as capital and liquidity requirements - implies
severe compliance costs (Elliehausen G 1998). Since a large part of compliance costs
are fixed costs, there are huge economies of scale to be exploited. A further increase
of compliance costs associated with new regulatory reforms due to be applied in the
next few years (Basel III) could force (especially small) banks (for instance, coop-
erative and savings&loans banks) to merge for reasons different from the pursuit of
efficiency in lending and borrowing activities. Since mergers among banks are scru-
tinized and approved by antitrust authorities and central banks, these latter have the
opportunity to design the structure of the industry by choosing how banks are allowed
to merge.

We design a flexible network platform that allows us to measure how the resilience
of an interbank network changes as we implement three different types of M&A
treatments. We define Vertical Merge Process (henceforth VMP) as one in which
there is only one big bank in the system, and as such is the only one allowed to acquire
other banks, so that it becomes larger and larger; a pure Horizontal Merge Process
(henceforth HMP) as one in which a bank is disassembled and its shares are evenly
distributed to all other surviving institutions. Finally, we envisage an intermediate or
semi-horizontal (SHMP) case in which a merger is only allowed between two small
banks. For exposition purposes, we present the SHMP as treatment I, the VMP as
treatment II and the HMP as treatment III.

Our starting point, equal for the three treatments, consists of a symmetric bank-
ing system populated by N=25 homogeneous small banks characterized by the same
probability P = 0.2 of forming a link between one another.6 Haldane (2013) pro-
vides evidence that most modern banking systems exhibit high levels of concentration
that have also increased over the last 20 years. The top three banks account for a mar-
ket share of 40 % in the USA, 60 % in Switzerland, 70 % in Germany, reaching a

5The residual loss for any bank j γj (t + k) for any k is defined a γj (t + k) = ∑
i �=j NDCji(t + k − 1) −∑

i �=j NDCji(t + k).
6We call this a symmetric system because banks belong to the same size-class and share the same
probability of being connected to one another.
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remarkable value of 80 % in the UK. Manna and Iazzetta (2009) report that the top 20
banking groups in Italy accounted for 80 % of the market and the top five groups had
a share higher than 55 percent in 2007. Finally, Gai et al. (2011) characterize the net-
work of large exposures between UK banks in 2008 with 24 nodes. With these trends
in mind, we feel that a network of 25 financial institution is a reasonable choice with
which to begin.

Our experiments are based on nine “merge-rounds”. The benchmark banking net-
work just described is found at merge-round one, and we simulate one merge at
each of the following eight merge-rounds. From merge-round two onwards, links
are formed with probabilities that are adjusted to keep the expected number of links
constant. In such a way, we can perform our resilience-analysis in a controlled envi-
ronment in which the aggregate size of the network, that of the interbank market
and the aggregate level of net-worth (which can be taken as a proxy for absorbing
capacity net of network effects) are kept fixed for any given level of interconnected-
ness. To the extent that the M&A regulatory strategy varies the number of channels
through which contagion can diffuse or the aggregate quantity of net-worth available
as shock-absorbing buffer, our experiments would by construction alter the ex-ante
degree of resilience. Here we shall want to keep that constant and we check instead
the ex-post resilience which only depends on the within-network distribution of such
links and equity.

Let us define Ps as the probability of forming a borrowing link for a small bank.
When large banks are formed, each one of them is assumed to have a borrowing
probability Pl > Ps to be connected to other banks. As an illustrative example, let
us consider the vertical merging process. Let N=25 be the total number of banks in
the homogenous case. The expected number of links in this case is equal to E(L) =
PN(N − 1). In merge round two, we now have 24 banks, out of which 23 will be
small banks and one large bank, the interbank liabilities of which will be twice as
large as those of the other small banks. In the third round there will be 23 banks, out
of which 22 will be small and one with interbank liabilities three times as large. Let
Ns be number of small banks and Nl the number of large banks in the asymmetric
network. The aggregate assets, defined as S = ∑Ns

s=1 Ss + ∑Nl

l=1 Sl (where Ss is the
value of assets of a small bank and Sl is the value of assets for a large one), remain
unchanged and so does the aggregate net-worth. In order to keep E(L) constant, the
following condition must be satisfied at all merge-rounds:

PN(N − 1) = PsNs(Ns − 1) + PlNl(Nl − 1) + Ps(NsNl) + Pl(NsNl) (7)

The left-hand side of Eq. 7 is the expected number of links in the benchmark case.
The right-hand size gives us the expected number of links in subsequent merge-
rounds when the network is possibly populated by large (Nl) and/or small banks
(Ns). In this heterogenous environment, the total number of expected links is given
by the sum of the expected links that small banks can form with the other Ns − 1
small banks PsNs(Ns − 1) or with large banks Ps(NsNl) plus the expected links that
a large bank can form with other Nl − 1 large banks PlNl(Nl − 1) or with all the
other small banks Pl(NsNl).

One important remark is in order. In the homogenous network Ps and Pl , the
probabilities of borrowing for a small bank and a large one respectively, are also
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the probability of lending. However, in asymmetric networks, the lending proba-
bilities are endogenously determined and no longer coincide with the borrowing
probabilities.7

Let us point out that the chosen treatment has an impact for two reasons. On the
one hand, we alter the concentration level in the market. As shown in Fig. 1, the
Herfindahl index is increasing at each round. Let us point out that we tried to work
with sensible concentration levels resembling values observed across Europe.8 On the
other hand, the treatments have an impact on the degree of asymmetry of the network.
The asymmetry can be measured along three different dimensions: difference in size
(between large and small banks), difference in the number of large and small banks,
and difference in interconnectedness. Let us note that neither aggregate assets nor the
number of expected links are affected by considering different treatments.

The difference in size is captured by the size adjustment coefficient �(R) that
we use at each merge round R to determine the size of interbank liabilities of large
banks relative to that of small banks, and external assets are adjusted accordingly.
The size of a large bank at each merge-round depends on the chosen treatment. Let us
define the number of large banks at merge-round R, Nl(R), as the number of banks
to which the size-adjustment coefficient �(R) is applied. �(R) is worked out in
such a way that aggregate interbank liabilities (and hence aggregate network assets)
are kept constant across treatments and across mergers. Our benchmark network is
homogenous with respect to total interbank liabilities, so that each bank has a total
interbank exposure equal to IL(1) at merge-round one. The following condition on
the aggregate value of interbank liabilities must then hold for all treatments and at
any merge-round.

IL(1)N = NsIL(1) + Nl�(R)IL(1) (8)

Once Ns and Nl have been set as shown in Table 2, �(R) is computed ex-post in
order to satisfy (8). Table 2 sums up how each treatment impact on these dimensions
of the network’s asymmetry and Table 3 provides a summary of the main variables,
parameters and acronyms used in the paper.

4 Contagion simulations

In this Section, we present the simulation results of our paper. In what follows, we
measure the resilience of the system to an exogenous idiosyncratic disturbance that

7Let us define the probability of lending for a small bank P L
s and P L

l the probability of lending for a large
bank, respectively. These probabilities are computed as: P L

s = [PlNl + Ps(Ns − 1)](Ns + Nl − 1)−1 and
P L

l = [Pl(Nl − 1) + PsNs ](Ns + Nl − 1)−1.
8The ECB report on banking structures (ECB 2010) reports information on the Herfindahl index for most
EU countries from 2005 to 2009. The average is around 11 percent but there is a great deal of cross-country
heterogeneity. Italy (along with Germany and Luxembourg) stands out as a low-concentrated market with
values increasing from 2.3 percent in 2005 to 3.53 in 2009. The Netherlands (or even more, Finland)
appear at the other end of the spectrum with a market concentration starting at 17 percent in 2005, up to
20 percent in 2009.
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Fig. 1 Herfindahl Index

randomly hits one bank. Let us stress that the size of the shock does not change as
we implement the three treatments, and it does not depend on the size of the buf-
feted bank. In the benchmark case, we randomly pick one small bank, whereas along
each M&A treatment we concentrate on shocking a large institution because this is
where the mutation of the network is most visible, and hence where new structural
vulnerabilities or additional resilience are likely to develop. We consider three differ-
ent alternative scenarios for the banking system: a robust environment characterized
by a four percent level of bank capitalization (β = 0.04)) and interbank market that
attracts 16 percent of the banking system’s assets (α = 5). A second case in which we
expand the size of the interbank assets up to about one third of total assets (α = 2) and
keep aggregate net-worth still at four percent. At last, we investigate the properties
of a more fragile environment in which banks are undercapitalized (β = 0.01).

Figure 2 displays the average contagion multiplier computed as the (averaged over
100 Monte Carlo runs) ratio between dislocated assets (at the end of the default cas-
cade) and the initial exogenous shock. Contagion multipliers do not always provide
the full story and there is more to the picture. A more detailed analysis is hence
presented in Fig. 3. In each panel, we display the contagion profiles obtained at
merge-rounds one (benchmark case - homogenous system of 25 small banks), four
and nine. Let us point out that, due to space constraints, we only display some treat-
ments and scenarios defined by the parameters α and β).9 The contagion profile
allows us to sum up the distribution of the Monte Carlo experiments in a single plot.

9The interested reader may refer to the working-paper version (Gaffeo and Molinari 2014), which features
a detailed discussion of all possible cases.

http://www.unitn.it/files/download/27419/demdp2014_01.pdf
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Table 2 Summary table of the treatments

Merge � Ns Nl Ps Pl

Rounds R

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

1 1 1 1 25 25 25 0 0 0 0.2 0.2 0.2 na na na

2 2 2 1.0417 23 23 0 1 1 24 0.2 0.2 na 0.617 0.617 0.218

3 2 3 1.0870 21 22 0 2 1 23 0.2 0.205 na 0.627 1 0.237

4 2 4 1.1364 19 21 0 3 1 22 0.2 0.224 na 0.638 1 0.260

5 2 5 1.1905 17 20 0 4 1 21 0.2 0.250 na 0.650 1 0.286

6 2 6 1.2500 15 19 0 5 1 20 0.2 0.280 na 0.663 1 0.316

7 2 7 1.3158 13 18 0 6 1 19 0.2 0.315 na 0.677 1 0.351

8 2 8 1.3889 11 17 0 7 1 18 0.2 0.356 na 0.694 1 0.392

9 2 9 1.4706 9 16 0 8 1 17 0.2 0.406 na 0.712 1 0.441

∑Ns

s=1 Ss + ∑Nl

l=1 Sl = 1500 ∀ Merge Rounds and Treatments

Average Number of Links=120 ∀ Merge Rounds and Treatments

Indeed, one can track how the value of the banking network (i.e. the sum of total
assets of all banks) evolves at different time-steps of the contagion process and easily
compare the profiles across merge-rounds and across treatments. We plot the entire
distribution obtained trough 100 Monte Carlo runs with a boxplot for each time-step.
The pre-shock status is captured at time-step I. At time-step II, the system takes an
exogenous idiosyncratic shock and the aggregate value falls by the size of this shock.
At time-round III, the residual loss (if any) is transmitted to other institutions con-
nected to the first bank and this is what we call contagion dynamics (henceforth CD).
At time-step IV, we capture the first round of default dynamics (henceforth DD). In
fact, at time-round IV there are two possible scenarios. In one case, neighbor banks
that carry the residual loss at time-round III, withstand the shock and survive. Hence
no default dynamics are triggered and the contagion profile flattens out. See, for
instance, the top-right panel in Fig. 3 at merge-round 4 for Treatment III. Or else,
they do not have enough net-worth to absorb the shock and , hence, they also fail.
Should this be the case, further losses sweep through the network and the contagion
profile keeps falling down even further, as shown in the bottom panels in Fig. 3. We
also display the final time-step at the end of the adjustment process, when the spread
of default is finished. The more severe are the (higher-order) default dynamics, the
lower the boxplot will be.

Let us point out that the randomness of the network generating process is only
visible at time-round IV onwards when DD start to kick in. At time-steps I, II and
III the boxplots are, in fact, squeezed to a single line, reflecting the fact that there
is no variation across the Monte Carlo runs. For example, in each run the starting
value of aggregate assets is always 1500 and the Merge-Rounds and Treatments are
implemented in such a way that we can perfectly control and set ex-ante the aggregate
size of the network.
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Table 3 Summary table of
network variables, parameters
and acronyms

Banking Network

N Number of Nodes/Banks (Benchmark Case)

Nl Number of Large Nodes (Banks)

Ns Number of Small Nodes (Banks)

P Interbank-borrowing-link Probability (Benchmark Case)

Pl Interbank-borrowing-link Probability for a Large Bank

Ps Interbank-borrowing-link Probability for a Small Bank

Parameters

α Interbank Deepness

β Equity Ratio

� Size-Adjustment Coefficient

γ Initial Trigger Shock

Balance-sheet Items

IL Interbank Liabilities

IA Interbank Assets

NW Net-Worth (Capital Buffer)

EA External Assets

D Costumer Deposits

M&A Treatments

SHMP Semi-Horizontal Merge Process (Treatment I)

V MP Vertical Merge Process (Treatment II)

HMP Horizontal Merge Process (Treatment III)

Network Matrices

Xl
n,n Weighted Liability Matrix

NDCn,nNon-Distressed Claim Matrix

Interbank Contagion

CD Contagion Dynamics

DD Default Dynamics

We start with the analysis of the robust environment, i.e. one in which banks com-
ply with the minimum four percent of capital and interbank assets only account for
16 percent of total assets, shown in the top panels in Fig. 3. We observe that the M&A
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Fig. 2 Contagion Multipliers - Treatment I (T1-SHMP), II (T2-VMP) and III (T3-HMP)
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treatments make the system more prone to contagion dynamics but less subject to
default dynamics, and this is true regardless of the chosen treatment. At time-step III,
both the contagion profiles consistent with merge-rounds four and nine appear to be
lower than that obtained with merge-round one. This means that contagion dynamics
are stronger for the former ones. Yet, default dynamics are not recorded and the con-
tagion profiles remain flat in subsequent time-rounds. With merge-round one instead,
the boxplots at time-step IV and in the final step reveal that the default dynamics are
not as rare and in some cases contribute to a non-negligible erosion of network assets.

One could argue that, in this scenario, the HMP (treatment III, top-right panel in
Fig. 3) performs best. Although we observe some default cascades at M&A rounds
four and nine, they are rather small in magnitude and rare (they appear as dotted
outliers in the box-plot). Even though default dynamics disappear under the VMP
(Treatment II - top-left panel in Fig. 3) and the SHMP (Treatment I, not shown),
contagion dynamics are stronger and contribute to a greater aggregate loss, and this
is particularly evident under the VMP. This is so because, as the large bank size
increases, so does its interbank borrowing and thus its strength as a shock-spreader.
Of course, it is possible for a bank to become so large that its role of shock-spreader
is diminished by the enhanced value of its network. Indeed, this is precisely what
we observe in Treatment II. In this case, from merge-round four onwards (see the
left panel in Fig. 2) one can fully appreciate how the shock-absorbing capacity of
the large bank more than offsets its strength as a shock-spreading unit, so that the
contagion multiplier starts to fall.

A number of interesting remarks are worth making. First, in a robust environment,
a more concentrated market is generally more stable, even though contagion multipli-
ers are higher than in the benchmark case at M&A round one. Second, a concentrated
and yet symmetric market does a better job at curtailing CD. An HMP is, hence,
to be preferred ex-ante to other consolidation rules consistent with the creation of a
more asymmetric network. Nonetheless, if the market is already dominated by a large
bank, the regulator should favor the formation of a big hub that could keep contagion
multipliers under control. The upside of having a hub can be even greater with a deep
interbank market. See Fig. 2 middle panel. In this case, the shock absorbing capacity
of the hub becomes so strong that its presence enhances the resilience of the system
to the point where contagion multipliers become smaller than those observed in the
benchmark case.

Given the topological structure induced by each treatment, we can analytically
derive an expected value for the magnitude of contagion and first-order default
dynamics. We compute CD and first-order DD for each treatment, as explained
below, and columns 1 and 2 in Fig. 4 display some selected results. One can directly
compare them with the contagion multipliers shown in Fig. 2.

Let us recall that IL(1) is the value of total interbank for a small bank at merge-
round R = 1, while �(R) is the size-adjustment coefficient applied at merge-mound
R. The value of interbank liabilities for a large bank at any merge-round R is
computed as:

IL(R) = �(R)IL(1) (9)
Let us stress that �(R), Nl(R) and Ns(R) are treatment specific and change, as

shown in Table 2. The following two equations show how contagion dynamics (CD)
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Fig. 3 Selected Contagion Profiles

and first-order default dynamics (DD) are computed at eachMerge-Round R. In order
to simplify notation, let us drop the Merge-Round index R, so that CD(R) = CD,
�(R) = �, IL(R) = IL, Pl(R) = Pl , Nl(R) = Nl , etc.

CD = min(IL, γ − �Ssβ) ∀R (10)

γ −�Ssβ represent the residual shock, i.e. the part of the exogenous shock that has
not been absorbed by the first bank equity. The size of a large bank is approximated
as Sl = �Ss and its networth is as usual a fraction β of its size.

DD1st = max[Pl(Nl − 1)
CD

Pl(Nl + Ns − 1)
− Pl(Nl − 1)Ss�β, 0]

+max[Pl(Ns)
CD

Pl(Nl + Ns − 1)
− Pl(Ns)Ssβ, 0] (11)

Pl(Nl + Ns − 1) gives the expected number of borrowing links of the first bank.
CD

Pl(Nl+Ns−1) represents the expected value of dislocated assets that is passed on to
neighbor connected banks. Some of these dislocated assets will possibly affect the
other (Nl − 1) large banks with probability Pl and some of the losses will instead be
borne by the Ns small banks with the same probability Pl . So Pl(Nl − 1)Ss�(R)β

and Pl(Ns)Ssβ are the expected aggregate pools of networth available, respectively,
to large and small banks that can be used as buffer against the residual shock.
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Fig. 4 Contagion Dynamics (CD) and 1st -order Default Dynamics (DD)

Let us point out that we only provide the general formulas that apply to all treat-
ments with some specific restrictions. In Treatment III, for instance, Ns is set to 0
from merge-round two onwards. See Table 2. This simply sets to zero the second part
of Eq. 11. With Treatment II instead, Nl = 1 from merge-round two onwards, and
this implies that the first part of Eq. 11 disappears.

We can use this analytical framework to enhance our understanding of contagion
dynamics. Let us discuss the α = 2, β = 0.04 scenario for Treatment II as a means of
example: the expected pool of networth of neighbor banks is given by Pl(Ns)Ssβ, and
Fig. 5 (bottom-right panel) shows that it declines at each merge-round. Nonetheless,
the shock-absorbing capacity of the large bank is so strong as to guarantee that the
residual shock passed on to these other banks (given by Pl(Ns)

CD
Pl(Ns+Nl−1) in Eq.

11) is smaller than their reduced equity base. Hence, our analytical results on DD,
presented in Fig. 4, top-right panel, show that no default dynamics are set in motion
for Treatment II. In such an environment, the policymaker should have a preference
for a hub-centered market.

This is no longer the case when the banking system is weakly capitalized. Here we
present results obtained with a deep interbank bank (α = 2). As one can appreciate
from the bottom-left panel of Fig. 3, the hub in treatment II is now working as a mar-
ket de-stabilizer. Even though contagion dynamics and first-order default dynamics
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Fig. 5 Residual Shock and Absorbing Capacity

are weaker than those observed with SHMP (T1) (see Fig. 4 bottom-panels), con-
tagion multipliers are higher with T2. This is due to a stronger effect of complex
higher-order default dynamics, which we do not model analytically. As one can see,
Fig. 6 shows how with VMP (T2) first-order default dynamics (at time-round four)
are weaker but fifth-order (time-round eight) and higher-order losses are stronger
than those recorded with Treatment I (SHMP). Higher-order losses are quantita-
tively important in a fragile environment as that depicted in Fig. 2 right panel and
Fig. 3 bottom panels. In this environment, it is clear that policy makers should not
encourage mergers or the creation of larger institutions. If necessary at all, unassisted
horizontal mergers do provide a better alternative to other forms of M&A. This is
so because the HMP (T3) is better able to curb higher-order default dynamics. The
disruption brought about by higher-order default dynamics depends on the probabil-
ity of being jointly hit by multiple shocks. The VMP and SHMP are characterized
by a higher level of interconnectedness and this significantly amplifies the chances
of a bank taking on losses from multiple counterparts. When the system is fragile,
a homogenous competitive banking system maximizes the resilience of the system
to higher-order distress, so that authorities should carefully ponder the desirabil-
ity of any takeover, merger or acquisition that could significantly alter the topology
of the network.
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Fig. 6 Network Assets: Blue Line - SHMP (T1), Black Line - VMP (T2) for Time-Round 4,5,6,7,8,9,10

In Fig. 7, we plot on a log-log scale the in-degree (the number of interbank
borrowing - left panel), the out-degree (the number of interbank claims - middle
panel) distributions as well as the contract size distribution of interbank exposures
(right panel).10 In order to save space, we only display the results for Treatment
I as a means of example, but we will comment on the other treatments as well
in what follows.

In order to improve readability, we overlay on each panel only the distribu-
tions obtained at merge-rounds one, four and nine. The square markers corre-
spond to merge-round I and this is the same for all treatments (apart from some
random variation). This shows the link distributions before any of the network-
altering merge processes have occurred. A visual inspection suggests that, at
this stage, the in-degree and the out-degree distribution follow a similar trun-
cated normal distribution (or Poisson) consistent with the random network gen-
erating process. The size distribution of interbank exposures are skewed to the
right with a the majority of contracts being rather small (typically lower than
two units) and this is not surprising given the constraint, imposed on all banks,
on the size of their total interbank exposure and the relatively high density of
the network.

10These plots are obtained by pooling 100 Monte Carlo experiments in order to maximize the number of
observations. In these simulations, we set α = 5 and β = 0.04.
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Fig. 7 Treatment I (SHMP): In-degree, Out-degree and Contract-size Distribution

As we implement the merge sequences according to the three treatments, the dis-
tributions start to depart from the initial one and differences start to emerge across
the three treatments as well as between the in- and out-degree distribution within the
same treatment. For example, one can appreciate how the in-degree distribution in
Treatment I ends up being bi-modal and this reflects to a large extent the balance
between the two types of banks populating the banking system. The bi-modality is not
a feature of the in-degree distribution for all treatments, though. As a matter of fact,
there is no evidence of this in Treatment III. This is expected, since this treatment is
one that preserves the homogeneity among the banks operating in the network. Treat-
ment II yields a single peak on the right tail of the distribution and this captures the
large super-connected bank that gradually become bigger and bigger merge-round
after merge-round.

It is worth pointing out that the in-degree distribution depends on the probabili-
ties Pl and Ps set ex-ante, so that banks of different size have different probability
of borrowing on the interbank market. By contrast, the out-degree is determined
endogenously and does not depend on the size of each bank. This explains why the
bi-modality does not emerge with respect to the out-degree. Let us also point out that
the out-degree distribution is very similar across the three treatments. Again, this is
reconcilable with the fact that out-going links are determined with endogenous prob-
ability that do not change a priori with the size of the bank nor change with the
implemented treatments.
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Fig. 8 Degree Distributions for T1, T2 and T3 - NGP with rewiring and preferential attachment
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Note that a shift to the right is clearly detectable in both the in and out-degree
distribution. This is so because the total number of links is kept constant across the
merge-rounds and is redistributed among a narrower set of banks, so that each bank
ends up being more tightly connected to the others.

At each merge-round the network shrinks, so that fewer and fewer banks
are more connected to one another and distribute a fixed aggregate volume of
interbank resources. Given that the series of mergers are constructed in such
a way that the total number of links are preserved, the size of each single
loan can either decrease or increase and, hence, their distribution can poten-
tially shift. The distributions for treatment II and III (not shown) are charac-
terized by a shift to the left, whilst the distributions consistent with treatment
I become more erratic but do not clearly exhibit any movements in either
directions.

5 Robustness checks

The core results presented in the previous section are obtained from random net-
works in which each bank (of the same type/size) has the same ex-ante probability
of forming a borrowing link with another bank. The empirical evidence does suggest
though that this may not be an accurate account of real-world banking networks. The
literature indeed shows that real interbank networks exhibit power-law degree distri-
butions that arise as a result of a network generation process that is well described
by the model presented by Barabasi and Albert (1999).11 Next, we implement an
endogenous mechanism of links formation that embeds the two key features of such
model, namely growth and preferential attachment. Starting from a very small net-
work with only five nodes, we let the bank population grow as follows: we rely on a
rewiring process in which at each time-step a new bank is added to the system and
connected to some old pre-existing nodes with some freshly created links assigned
with a probability that is proportional to the number of links that the latter nodes

11The distribution properties of real banking networks are analyzed in Boss et al. (2004) and Soramäki
et al. (2007), among others.
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Fig. 10 Contagion Multipliers - NGP with rewiring and preferential attachment

already have. The process continues until the desired network size is reached, i.e. 25
banks at merge-round I, 23 at merge round II, etc.

A few remarks are in order. This rewiring process allows us to set the desired size
of the network but does not permit to fix ex-ante the density of the network. This
forces us to fine-tune the rewiring process at each merge-round until we obtain a net-
work the total number of links of which is comparable (although not exactly equal)
to that used in the previous section (i.e. 120 expected links). While this guarantees
internal consistency with our previous result, some important caveats still apply to
this exercise. Note that the rewiring process consistently yields a power-law degree
distribution when the final network is typically quite large (200 nodes or more) and
the density rather small. This is not guaranteed, though, with small and dense net-
works such as the ones we work with in this paper. Deviations are in fact possible
and become more and more frequent as smaller networks are put in place through
the merge treatments.12 Although the degree distributions obtained with preferential
attachment (shown in Fig. 8) are clearly different from the ones we obtain with a ran-
dom network, the left-tail of the distribution deviates from what would be predicted
by a power law. Let us also note that the limited size of the network rules out the
occurrence of extreme values in the right tail of the distribution. The rewiring process
also affects the contract size distribution (see Fig. 9) that clearly departs from the
benchmark case. Nonetheless, the homogeneity across banks with respect to the total
size of their interbank liabilities still appears to drive the shape of the distribution
and, again, its departure from a power-law.

Once all the new links and nodes are added, we sort banks by the number of
links (from the most connected to the weakest ones) and the size adjustment coef-
ficient (see Table 2) is applied to the first Nl nodes in each treatment.13 Hence,
we now have an exact correspondence between bank size and degree. At this stage,
we ignite contagion dynamics via an exogenous shock that is targeted to the largest
bank in the market. As before, we consider three different possible scenarios and
Fig. 10 displays the correspondent contagion multipliers. A visual comparison with

12An alternative modeling strategy would be to create a scale-free network with a power-law parameter in
line with that estimated using real data. This would yield a scale-free network even with a small sample size
but the total number of links would be much smaller than that required to have a meaningful comparison
with the benchmark case presented in the previous section.
13Let us note that Nl is both treatment and merge-round specific, as it should be clear from Table 2.
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those presented in Fig. 2 reveals that the patterns discussed in the previous sections
remain qualitatively similar. Within each scenario, the evolution of the contagion
multipliers is fully consistent with our previous comments. The only noticeable dif-
ference in this context is that the competitive network at merge-round one always
exhibits the lowest contagion multiplier for any given setting of our parameters
α and β.

6 Concluding remarks

In this paper we have aimed at shedding light on the channels through which different
competitive settings can fuel default/contagion throughout an interbank network, in
order to draw some conclusions towards the provision of macroprudential-oriented
consolidation policy rules.

Some remarks on the limitations of our analysis are in place, however. First,
here we have focused exclusively on a resolution mechanism assimilable to a bail-
in scheme (Gaffeo and Molinari 2015). When studying a homogenous network, the
value of dislocated assets and the number of defaults during a contagion spiral tend
to move hand in hand and, hence, the number of defaults is taken as a sufficient
statistic for network resilience. When the size can vary across banks, though, this
may no longer be the case, and this is why we focus on dislocated assets. Let us also
note that we have defined dislocated assets as those assets that are wasted during the
contagion process and the bail-in mechanism is consistent with this idea. Other res-
olution mechanisms are not as suitable. If, for example, a failed bank is liquidated,
some of its assets will be destroyed during the process (due to the initial shocks or
further fire-sales) and yet some assets are not lost as such but simply transferred out-
side the banking system (such as the assets used to pay back depositors). The simple
measure of assets available to the banking system is in this case an upward biased
measure of contagion-induced stress. Under a bail-in scheme, the value of dislocated
assets provides an unbiased measure of distress because the assets wiped out of the
banking system during the episode of contagion are also lost by the economic system
as a whole. Second, we have only studied the propagation of a shock via interbank
liabilities, and we have provided an inspection of the role of large banks as shock-
spreader through this channel. In real networks, this may not necessarily be the case.
Indeed, structural vulnerabilities could also develop and propagate through interbank
assets (rather than liabilities) and these dynamics would be captured with a liquida-
tion mechanism in which interbank assets can be called back in and hence trigger
a funding shock to neighbor debtors. These could of course amplify the dynamics
discussed in this paper, and further research is certainly needed to shed light on this
aspect.
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